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1 Abstract 

The issue of partitioning space underlies the architectural 

planning and design of structures and spaces allocated for human 

activity. 

This thesis focuses on the phenomenon of periodic dual spaces 

and the partition between them. Periodic three-dimensional 

networks can represent the inner structure of these spaces. Each 

periodic network in space has only one dual network (dual 

networks are discussed in the thesis). These network pairs are often 

referred to as complementary or reciprocal networks. Every dual 

network pair can be partitioned and separated by a smooth 

hyperbolic surface. 

The thesis explores the unique phenomenon of identical dual 

networks and the hyperbolic surface separating them and dividing 

the space into two identical subspaces.  

The purpose of the thesis is to investigate the phenomenon of 

identical dual spaces, the relations between the order and 

organization of the space, and the nature of the resultant symmetry 

operations, and the partitioning of the space into two identical 

subspaces and the nature of the dividing 2-manifold between them. 

An additional goal we set ourselves at the outset of the thesis was 

to examine the likelihood range of the phenomenon according to 

its definitions, and to find a way to classify and exhaust the surfaces 

dividing the space into two identical subspaces.   

The thesis comprises four stages: 

The first stage consisted of studying identical dual spaces, 

their properties and significance. 

The tunnel-like periodic spaces represented by networks are 

defined within the Euclidean three-dimensional space, and are 
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composed of periodic cells. This property indicates the relation 

between the networks and the surface separating them and the 

symmetry groups acting on this space. 

The smallest periodic cell of the periodic space derived from 

that space by the symmetry operation of the symmetry group acting 

on this space is entitled “The Elementary Periodic Region” (EPR). 

The EPR exemplifies all the properties of the space and all its 

phenomena, such as representation of the complementary dual 

networks, the partition surface separating them, and the symmetry 

operation. 

At this stage of the study the topological properties of the 

smooth 2-manifolds in general and those of smooth 2-manifolds 

dividing the space between two dual networks in particular were 

explored. 

The major properties of these 2-manifolds are: 

a. The 2-manifolds are smooth, periodic and hyperbolic, and exist 

in the three-dimensional space. 

b. The 2-manifolds divide the space into two identical sub-spaces 

that graphically represent two transposing tunneled networks 

which do not intersect. The tunnel networks are identical in 

volume and shape, and their axes form two identical three-

dimensional networks. 

c. The 2-fold 1800 rotation axes contained in the 2-manifolds 

rotate one sub-space into the identical complementary 

subspace, forming a periodic three-dimensional network 

referred to in this thesis as “a 2-fold network”.  

An unequivocal distinction was made between minimal 

hyperbolic surfaces that can be physically realized by dipping a 

defined perimeter in soap water (henceforward “soap membrane 
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networks”) and minimal surfaces whose dipping is not physically 

solvable.  

The second stage of the thesis focused on the development of 

a method to enumerate and classify the 2-manifolds that divide the 

space into two identical subspaces, and to identify the axes of the 

identical dual tunnel networks. The method of enumerating the 2-

manifolds was based on the topological properties of the 2-

manifolds studied in the first stage. 

It is noteworthy that the issue of periodic minimal hyperbolic 

2-manifolds that divide the space into two identical subspaces were 

investigated in the past with special regard to the first category of 

minimal realizable surfaces (“soap membrane networks”). Seven 

surfaces corresponding to these characteristics were found. The 

second category, that of periodic minimal surfaces which cannot 

be physically realized by dipping the perimeter in soap water, was 

investigated in connection with the division of the space into two 

identical subspaces in a very preliminary manner. It was clear even 

then that numerous identical networks and a smooth hyperbolic 

partition dividing them could be put through every “elementary 

three-dimensional space cell” containing 2-fold axes. No attempt 

has been made to date either to construct and characterize these 

surfaces or to define the range of their existence and exhaust it.  

The existence and periodicity of the 2-manifolds that divide the 

space into two identical subspaces in the Euclidean three-

dimensional space indicate the link between these 2-manifolds and 

the symmetry groups operating within this space.  

The “atomistic” conception of the periodic space suggests the 

existence of an EPR (elementary periodic region) that embodies all 

the properties of the periodic space. Locating the “elementary 

periodic regions” that represent identical dual spaces (elementary 



4 

 

regions in which the axes of the 2-fold network is represented) and 

the dividing surface leads to the discovery of the 2-manifolds. 

Because the number of the E.P.R.s representing the symmetry 

groups operating in the Euclidean space is finite, the number of 

E.P.R.s is also finite 

The method of enumerating the 2-manifolds developed in the 

thesis consists of consecutive steps described below. Each step 

narrows down the scrutinized area and brings us closer to the final 

goal: 

a. Locating all the E.P.R.s derived from the Euclidean space by 

the symmetry groups. 

b. Locating in the E.P.R.s enumerated in the first stage the E.P.R.s 

representing the networks whose rotation axes contained in 

these networks, namely E.P.R.s containing 2-fold networks 

that can rotate the E.P.R.s into themselves. 

c. Locating 2-fold networks by duplicating the E.P.R.s found in 

step 2. 

d. Locating periodic cells enclosed in the 2-fold network (more 

than one is likely), which may enclose a periodic unit of the 2-

manifold, and exhaustion of the possible 2-manifold units.  

e. Duplicating the periodic cells with the enclosed periodic unit 

of the 2-manifolds, until a large enough section of the surface 

enabling identification of the self-dual tunnel network is 

obtained.  

f. Topological enumeration of each 2-manifolds according to its 

respective tunnel network. 

The third stage focused on the process of locating the 2-fold 

networks. 

Locating the rotation axes of the networks is supposed to be 

exhausted at this stage. The method of locating the 2-fold networks 
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is based on the identification of the E.P.R.s that may, as stated 

above, contain axes that rotate them into themselves. This is not a 

systematic or combinatorial method and hence we may have 

missed some 2-fold networks. At this stage, fourteen different 2-

fold networks were found. Twelve of the fourteen 2-fold networks 

were found to contain seventeen different closed periodic cells that 

may enclose a periodic unit of a 2-manifold network entitled 

“Elementary Periodic Segment”.  

With regard to the first category, duplicating these closed cells 

– “the soap membrane networks” – led to the discovery of eight 

topologically different 2-manifolds so far. Among them, a new, 

unknown to date, 2-manifold was discovered, which was 

designated “The Cubic Diamond 2-Manifold.” 

Among the seventeen closed cells mentioned above, there are 

six closed cells with a split perimeter. These split perimeters can 

enclose “elementary periodic segments” of the second category, 

i.e. they can enclose in the periodic cell a successive smooth 

hyperbolic “elementary periodic segment” which is topologically 

different from the minimal “elementary periodic segments” 

previously discovered. Thus, a new class of 2-manifolds 

designated “The Multiple-Sleeved Class” was found. This class 

consists of an infinite number of topologically different 2-

manifolds. This indicates that the tunnel axes of these 2-manifolds 

represent pairs of identical-dual networks that differ from each 

other. 

The method of locating the 2-manifolds that divide pairs of 

identical-dual subspaces proposed in this dissertation led to the 

discovery of new 2-manifolds in addition to the seven 2-manifolds 

found by Prof. M. Burt. The 2-manifolds were looked for in 

representative groups, such as the elementary regions and the 
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symmetry groups, which have a finite number of members. This 

does not necessarily mean that the number of 2-manifolds and/or 

the number of identical-dual pairs of networks is also finite. 

Following are a few suggestions about how to further pursue 

this study: 

a. Locating other 2-fold networks apart from the fourteen that 

were found. We have no proof of exhaustion, and it is likely 

that other networks exist. Looking for these networks in the 

course of implementing the method proposed in this study of 

locating and enumerating the 2-manifolds, was pursued by 

identifying the elementary regions containing an axis or axes 

that rotate the 2-manifolds into themselves. It is likely that 

some of the elementary 2-manifolds have eluded us.  

b. Locating closed three-dimensional cells, apart from the 

seventeen that were found.  Because we have no evidence of 

exhaustion, these cells may be located in the new 2-fold 

networks that may be discovered, as well as in the 2-fold 

networks found in out study. 

c. Locating new 2-manifold classes in addition to the ones 

mentioned in out thesis: 

 The “soap membrane networks” class. 

 The “multiple-sleeved networks” class. 

 

In addition to locating and classifying the 2-manifolds, this 

dissertation proposes a method for designating the dual spaces. The 

dual spaces, or the tunnel networks representing these spaces, 

characterize topologically the 2-manifolds separating them. 

Designating the networks means designating the 2-manifolds. The 

method of designating the networks is based on the fact that each 

network contains a number of typical “packaging cells”. 
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Designating the packaging cells leads to the identification of the 

networks and of the dual spaces and hence to the identification of 

the 2-manifolds dividing them. The notation of the packaging cells 

is based on the notation method developed for the Platonic and 

Archimedean solids, adapted to irregular packaging solids, to 

solids with hyperbolic faces, to solids with irregular polygon faces, 

and to solids with non-uniform vertices. This notation method does 

not purport to designate all the possible solids: the more complex 

the solid the more sophistication required to interpret it. Moreover, 

interpretation may sometimes be impossible. The proposed method 

is therefore suitable for the simplest cases. More complex cases 

may have to resort to literary notations.  
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2 Introduction 

2.1 The research and objectives of the dissertation 

In the beginning God created the heavens and the 

earth. Now the earth was formless and empty, 

darkness was over the surface of the deep… and he 

separated the light from the darkness… and separated 

the water under the vault from the water above 

it… God called the dry ground “land,” and the 

gathered waters he called “seas.”… (Genesis 1) 

The partition of space lies at the core of architectural design. 

The definition of regions, their organization, and their relations. 

Both the private and public spaces, from personal living spaces, 

through streets, yards, and public buildings, are defined by 

partitions. Some physical, and some virtual and ethereal. 

These partitions, which separate different spaces, often 

describe open and continuous envelopes, otherwise we would have 

closed spaces, with no entrance or exit, which would hence be 

unusable. The continuity of partitions allows the connection 

between the spaces, and the transition from region to region in a 

form of labyrinth. 

The labyrinth may be ordered in different degrees of order. 

When talking about degrees of order, the opposite of chaos, we’re 

talking about degrees of repetition. Meaning, there are repeating 

elements of different levels of complexity. For instance, a room in 

a living structure, a room in an office building, a room in a hotel, 

etc. From the urban perspective, it is possible to observe a lot, 

structure, neighborhood, city, etc. as repeating elements. 
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Since the beginning there has not existed chaos. We can always 

find some order in any phenomenon we examine, from the 

distinction between light and darkness, to the nucleus of the atom. 

The partitions which define multiple subspaces in the three-

dimensional space create a form of duality between the subspaces. 

That is, there is a link between the subspace from one side of the 

partition to the dual subspace on the other side of the partition. In 

ordered and cyclical arrays, this duality manifests through exact 

patterns. 

The morphological-conceptual discussion in cyclical two-

dimensional partitions is of great importance for understand space 

and the ability to develop an ability to understand and organize 

space, both functionally and from a design perspective. 

The phenomenon of partitioning space into subspaces is a 

widespread phenomenon. It is possible to observe multiple 

methods for partitioning space. The ones most commonly known 

are: 

1. The partitioning of space by envelopes which define closed 

spaces. In this case, the morphological discussion deals with 

the relation between the spaces, or, more accurately, the 

relation between the volumes defined by the envelopes. The 

discussion may deal with multiple questions: Do these objects 

intersect? Is part of the partition common with adjacent 

objects? If so, the packing of objects may also be discussed, if 

it is sparse or dense. 

2. The partition of space by a continuous and infinite surface 

which does not self-intersect. Each of these surfaces may 

divide the space into two subspaces which are present on either 

side of the surface. Such subspaces do not intersect or overlap. 
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3. n continuous, infinite surfaces which do not intersect or self-

intersect, which divide the space into n+1 mutually exclusive 

subspaces. 

4. An infinite yet non-continuous surface. That is, there exists 

openings within the surface which allow transition from one 

side of the surface to the other. Such a surface does not divide 

space. 

2.2 The nature and definition of the phenomenon, and 

methods of understanding it 

The research discusses the phenomenon of infinite continuous 

smooth minimal surfaces which partition space into two subspaces. 

Among all surfaces which partition space into two subspaces there 

exists a unique family of minimal surfaces which partition space 

into two identical subspaces. 

The morphological discussion of the unique phenomenon of 

minimal surfaces which divide space into two identical subspaces 

allows focusing on the exploration of this specific phenomenon, 

studying it and making conclusions about the general phenomenon 

of partitioning space. 

The purpose of the research is to deal with several subjects: 

a. Investigating the phenomenon of dual identical periodic spaces 

and the partition between them. 

b. The relation between order, organization of space, and its 

partition, to the symmetry groups which define this order. 

c. The spectrum of possibility for the phenomenon. Is the number 

of surfaces fulfilling the requirements finite or infinite? Is there 

a way to sort them, topologically? 

The phenomenon of partitioning space into two identical 

subspaces by smooth, continuous, repeating, minimal surfaces is a 
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known phenomenon. Thus far, seven different surfaces which 

fulfill this requirement are known. The surfaces are shown in 

Figure 1, as a subsection of each. 

The research points out the properties of these surfaces. Based 

on these properties, it develops tools to identify and discover 

surfaces which fit these properties. 

 

 
 

 

  

  
Figure 1 - Seven topologically different surfaces which divide the space into 

two identical subspaces. 
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3 Topological attributes of smooth surfaces which 

divide the space into two identical subspaces 

3.1 Smooth surfaces – concepts and attributes 

The discussed surfaces belong to the family of smooth two-

dimensional surfaces. Smooth two-dimensional surfaces are 

characterized by the fact that all of their points are regular. 

A regular point on the surface is a point in which all the 

tangents to the surface going through a single point are on a single 

plane. This plane is called the tangent plane to the surface. The line 

perpendicular to the tangent plane going through the same point is 

called the normal. Intersections between the surface and planes 

which contain the normal form curves which go through the regular 

point, and are called normal sections. 

The tangent plane characterizes two types of surfaces: 

a. A surface which is intersected by the tangent plane – a saddle-

shaped surface (Figure 2). 

b. A surface which is locally all on one side of the plane – a dome 

or cylindrical surface. 

 
Figure 2 - Tangent plane to a saddle surface. 
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Amongst all the normal sections going through a regular point 

on a smooth surface, there exist two unique normal sections. One 

section represents a curve with maximal curvature. Another section 

represents a curve with minimal curvature. Both curves are called 

the principal curvatures of the surface, and are perpendicular to 

each other. 

The average of the principal curvatures is called the “mean 

curvature”, while the product of the main curvature is called the 

“Gaussian curvature”. 

The Gaussian curvature is a number which characterizes the 

surface and is a tool for topologically categorizing different 

surfaces (Figure 3) as follows: 

a. A negative Gaussian curvature – characterizes saddle surfaces. 

b. A zero Gaussian curvature – characterizes cylindrical surfaces. 

c. A positive Gaussian curvature – characterizes dome surfaces. 

 
Figure 3 - Surfaces with different Gaussian curves. 

3.2 Minimal surfaces which divide the space into two 

identical subspaces 

From researching the phenomenon of partitioning space into 

two identical subspaces by the aforementioned surfaces, we learn 

about their characteristic topological properties, which are: 

a. The surfaces are two-dimensional, smooth, saddle-shaped, and 

embedded in the three-dimensional Euclidean space. 
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b. The surfaces partition space into two identical subspaces. The 

two subspaces are often called dual spaces or complementary 

spaces or congruent spaces. The two spaces form two tunnels 

which intertwine and do not intersect. The two tunnels are 

identical in volume and shape, and their axes form two identical 

dual three-dimensional networks (Figure 4). 

 
Figure 4 - Two dual tunnel networks and the surface buffering them. 

The duality of these networks manifests in that a vertex of one 

interchanges with the volume of a “packing cell” of the dual 

network. Each three-dimensional, periodic network through 

space can be represented by tight packing (without spaces) of 

an object or multiple three-dimensional objects. The objects 

may have planar faces, smooth saddle-shaped faces, or a 

combination of both. These objects are called the “packing 

cells of the network”. The vertices of one network are at the 

centers of the packing cells of its dual network. The edges of 

the networks, which connect its vertices, intersect the faces that 

are common to two adjacent packing cells. Each periodic 
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network in space has exactly one dual network. Both networks 

are dual (Figure 5). 

 
Figure 5 - Two dual networks and their packing units. 

c. It is possible to transform one subspace to its dual via 1800 

rotation. The axes around which such a transformation is 

possible are embedded in the partitioning surface, and form a 

network which we call “2-fold axis network”. All edges of the 

network going through a single vertex (the intersection point of 

the rotation axes) are on a single plane. 

d. The periodic nature of the surface indicates that the surface is 

made of basic periodic units. It also indicates the relation 

between the surface and the symmetry groups in three-

dimensional space. 

We observe two forms of elementary periodic units of a surface 

which partitions space into two identical subspaces: One – A 

periodic unit bounded by a three-dimensional polygon formed 

by the 2-fold axes. The other – An elementary periodic unit that 
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is derived by the symmetry elements that operate on the surface 

(Figure 6). 

 

 

  
  

Figure 6 - Elementary periodic units. 

 

The elementary periodic unit contains all of the properties of 

the surface, including representation of the 2-fold axes which 

rotate it into itself. The elementary periodic unit that is derived 

from the symmetry elements operating on the surface is 

represented within an elementary periodic region (E.P.R.) 

which will be farther discussed in the following chapter. 

The E.P.R. embodies within it every periodic element 

belonging to the space it represents. In the case of the 

aforementioned surfaces, the surface is represented by an 

elementary periodic unit that is derived from the symmetry 

elements operating on the surface. This unit divides the volume 

of the periodic region into two identical volumes. 

The network of 2-fold axes are represented by an axis or axes 

which go through the elementary periodic region and rotate it 

into itself. There are also cases in which the 2-fold axes 

network is represented by an axis or axes which rotate the 

elementary periodic region into an adjacent region. (Figure 7). 
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Figure 7 - 2-fold axes represented in the E.P.R. 

e. The Euler genus of the periodic unit is an integer representing 

the number of cross-caps required to close the unit (Figure 8). 

By approximating the surface within the translation cell using 

a polyhedron, it is possible to calculate the genus � of the 

translation cell via the Euler characteristic, � − � +� = 2(1− �). 

Since Euler characteristic is invariant under subdivision, the 

calculation of the genus does not depend on the accuracy of the 

approximation. 

The Gaussian curvature can likewise be represented as a 

number dependent on the genus K=Kmax×Kmin=4π(1-g) 

 

 
Figure 8 - Typical translation cell of a periodic surface with genus 3. 
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4 The method for searching and classifying the 

surfaces 

4.1 The link between the surface attributes and symmetry 

groups 

The properties of the desired surfaces, as previously described, 

resulted in the development of a method to search for and classify 

the surfaces. 

The surfaces are defined as periodic, that is, made from a 

periodic unit. This property links the surfaces with the symmetry 

groups which operate in three-dimensional space. 

The symmetry group is a combination of symmetry operations 

which operate on a point in space. By choosing points in space such 

that the environment around each point is identical, we form an 

infinite repeating lattice of points. 

The number of different combinations of symmetry operations 

in three-dimensional space is finite. There are 230 different 

combinations, which are known as the 230 symmetry groups in 

three-dimensional space. Each of the 230 symmetry groups define 

a different point network. These networks are known as 

“crystallographic networks”. The crystallographic network is a 

platform for any regular periodic array. 

“Periodic” means the existence of an elementary unit cell 

which cannot be farther divided by symmetry operations. The 

elementary periodic region (E.P.R.) represents, within it, all the 

properties of the periodic space. 

An elementary periodic region which represents a region from 

one of the aforementioned surfaces will contain an elementary 

periodic unit which represents that surface. 
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4.2 Locating the Elementary Periodic Regions (E.P.R.) 

containing a piece of surface representing one of the 

required surfaces 

An elementary periodic unit of a surface which partitions space 

into two identical subspaces, divides the volume of the E.P.R. into 

two identical complementary volumes. (Figure 9). 

 

Figure 9 - Typical E.P.R.s and the periodic surface which divides them into 

two identical volumes. 

An elementary periodic unit which is inside the E.P.R. contains 

a symmetry operation which transforms one volume into its 

identical complementary volume. This symmetry operation, as 

mentioned, is a 2-fold axis or axes (1800 rotation) which go through 

the E.P.R. and rotate it into itself. 

The E.P.R. which contain a 2-fold axis or axes may contain an 

elementary periodic unit of the surface. (Figure 10). 

 

 
Figure 10 - Typical E.P.R.s which contain 2-fold axes. 
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4.3 Locating Elementary Periodic Unit of the surface 

Replicating the E.P.R, which contains 2-fold axis or axes which 

rotate it into itself, leads to the creation of a 2-fold axis network 

(Figure 11). 

 
Figure 11 - 2-fold axis network. 

The 2-fold axis network is a periodic network, meaning, it was 

created by the replication of a periodic segment. In these networks, 

it is possible to find a large number of different periodic units, from 

the basic network segment which is bounded by the E.P.R. and up 

to a cell which can be replicated by translation alone. We say that 

the size of the periodic unit depends on the degree of periodicity of 

the unit. The most elementary periodic unit (contained in the 

E.P.R.) is a unit with the highest periodicity, whereas groups of 

said unit, up to the size of a translation unit, are of a lower degree 

of periodicity. 

Amongst all the periodic units of the 2-fold axis network, there 

exists a unit with a bounded periodic cell made of 2-fold axes 

segments (Figure 12). 
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Figure 12 - Periodic cells and the minimal surface segment bounded by them. 

In exploring the properties of the smooth surfaces which 

partition space into two identical subspaces, we have come to see 

that the periodic units of the 2-fold axis network are a boundary of 

the periodic units of the surface. Meaning, a periodic unit of the 

surface is bounded in the periodic cell of the 2-fold axis network. 

Locating the periodic cell within the 2-fold axis network, and 

the surface segment bounded by it, and replicating it through 2-fold 

rotation operations, would lead to the creation of a smooth periodic 

surface which partitions space into two identical subspaces (Figure 

13). 

 
Figure 13 - Part of a surface which results from replicating a periodic cell 

containing a periodic surface segment. 
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We go farther to say that any motif bounded by the periodic 

cell of a 2-fold axis network would lead to a periodic surface which 

partitions space into two identical subspaces. 

Possible motifs are: 

a. The minimal surface bounded by the cell 

b. A polyhydric segment resulting in the creation of an infinite 

polyhedron. 

c. A surface segment made from planar faces, which may lead to 

the creation of an infinite polyhedron which may or may not be 

regular. 

d. Any surface segment that is regular or has singularity points 

(Figure 14). 

  

  
Figure 14 - Different polyhedra which are the result of replicating the 2-fold 

cell that has different motifs. 
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4.4 Topological classification of the surfaces 

The method for locating the surfaces which divide space into 

two identical subspaces yields many surfaces which are 

topologically similar.  

 

 

 

 

Figure 15 - Typical translation cells of surfaces which divide space into two 

identical subspaces. 

 

There are two physical characteristics to the aforementioned 

surfaces. One is the shape of the translation cell of the surface. The 

other is the geometrical shape of the two subspaces on either side 

of the surface (Figure 15). 

The surface partitions space into two identical mazelike 

subspaces made from two continuous intertwined tunnels. The 

axes of the tunnels form a periodic continuous network which is 

called “the tunnel network”. The relation between the two 

networks is dual-complementary, and each can be defined by the 

other (Figure 16). 
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Figure 16 - Dual-complementary tunnel networks and the surface separating 

them. 

Both of the aforementioned characteristics derive from one 

another. Replicating the translation cell leads to the creation of the 

surface which divides space into two tunnel-like subspaces, vice 

versa. 

There is a one-to-one relation between a typical translation cell 

and the tunnel network. Surfaces which may appear different, as 

well as elementary surface segments which are bounded by 

different E.P.R.s may be characterized by similar tunnel networks 

and lead to a similar translation cell. Surfaces characterized by a 

similar tunnel network are topologically similar. 

Categorizing the surfaces based on the tunnel networks or 

typical translation cell, may lead to the location of surfaces which 

are topologically different. 

4.5 Summary of the method for locating and classifying the 

surfaces 

The method for locating the surfaces is made from sequential 

phases, each of which brings us closer to the target, and narrows 

down the search area. 
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Performing each of the steps of the method leads to the location 

of all smooth surfaces which divide space into two identical 

subspaces. Smooth surfaces are surfaces which their surface 

segment, bounded by the cell bounded by the 2-fold axis network 

is the minimal surface. Amongst the surfaces found there will be 

surfaces which may appear different, but are topologically 

identical. 

The phases of the method are as follows: 

a. Locating the elementary regions defined by the symmetry 

groups which operate in the Euclidean space. 

b. Filtering down to the elementary regions which contain 2-fold 

axes which rotate them into themselves. Meaning, they may 

contain a surface segment which divides their volume into two 

identical complementary volumes. 

c. Locating 2-fold axis networks formed by replicating the 

located elementary regions. 

d. Locating a periodic cell bounded by the 2-fold axis network, 

and finding the elementary surface segment bounded by it. 

e. Replicating the bounded cell until a large enough segment of 

the surface, which allows identifying the tunnel network or a 

typical translation cell, emerges. 

f. Defining the dual-complementary tunnel networks. 

g. Presenting the E.P.R which contains the representation of the 

2-fold axes, the surface segment, and both of the dual networks. 

h. Categorizing the surfaces based on the distinct dual tunnel 

networks. 
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5 The process of searching for and classifying the 

surfaces 

5.1 Locating the Elementary Periodic Regions (E.P.R.s) 

A periodic space is an array created by the replication of basic 

three-dimensional units, which are packed without leaving any 

spaces, that is, they cover the entire space. 

The elementary unit is shaped as a three-dimensional box, 

which is called a “typical translation cell”. The repetition is 

expressed by translation of the cell in the three dimensions of 

space. 

Different typical translation cells are characterized by the 

relations between the lengths of the edges of the cell, and the angle 

between them. The different combinations of possible ratios 

between the lengths of the edges of the cell and the angle between 

them, define only 7 typical translation cells. 

The vertices of a typical translation cell, which are packed next 

to each other in a sequence, so that they cover the entire space, 

create an organized periodic array of points. The aforementioned 

system of points is called a crystallographic system (Figure 17). 

 

 
Figure 17 - Crystallographic system made by replicating a translation cell. 
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We will note that replicating the typical translation cell, to 

receive the entire space, is done by translation only. Translation is 

the most elementary symmetry operation. Translation cells may 

contain within them other symmetry operations besides translation. 

A symmetry operation which is applied to the array of points, 

around one of the points in the array, causes all of the points to 

move, other than the point around which the symmetry operation 

was applied, and take the position of other points in the array. The 

whole structure of the array of points has not changed its form after 

the operation. 

The symmetry operations in three-dimensional space are: 

 

a. Mirror planes 

 

b. 2-fold (1800), 3-fold (1200), 4-fold (900), or 6-fold (600) 

rotation axes. 

 

c. Inversion points and axes. 

 

A group of different combinations of symmetry operations 

acting around a point is called a symmetry group. When we 

examine each of the seven different systems, we discover that there 

is an essential symmetry element. The essential symmetry element 

is joined by additional symmetry elements up to the maximal 

different possible combinations. This class is called the 

holosymmetric class. All of the combinations on the path to the 

holosymmetric class are called symmetry sub-classes of the 

system. The sum of all possible combinations, meaning, all 

symmetry classes in three-dimensional space, comes up to 230 

classes. 
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The seven different systems are: 

a. Triclinic system 

Ratio between 

edges 
cba   

 
Figure 18 - A 

translation cell of the 

Triclinic system 

Angle ratio  90γβα  

Symmetry elements 

Center inversion point 

b. Monoclinic system 

Ratio between edges cba   

 

Figure 19 - A 

translation cell 

of the 
Monoclinic 

system 

Angle ratio  90β,90γα  

Symmetry elements 

Center inversion point 

1 mirror plane 

1 2-fold axis (Essential) 

c. Orthorhombic system 

Ratio between edges cba   

  

Figure 20 - A 

translation cell of 

the Orthorhombic 

system 

Angle ratio  90γβα  

Symmetry elements 

Center inversion point 

3 mirror planes 

3 2-fold axes (Essential) 
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d. Tetragonal system 

Ratio between edges cba   

 
Figure 21 - A 

translation cell of the 

Tetragonal system 

Angle ratio  90γβα  

Symmetry elements 

Center inversion point 

5 mirror planes 

4 2-fold axes 

1 4-fold axis (Essential) 

 

e. Cubic system 

Ratio between edges cba   

 
Figure 22 - A 

translation cell of 

the Cubic system 

Angle ratio  90γβα  

Symmetry elements 
Center inversion point 

9 mirror planes 

6 2-fold axes 

3 4-fold axes 

4 3-fold axes (Essential) 

 

f. Trigonal system 

Ratio between edges cba   

 
Figure 23 - A 

translation cell of 

the Trigonal system 

Angle ratio  90120γβα  

Symmetry elements 

Center inversion point 

3 mirror planes 

3 2-fold axes 

1 3-fold axis (Essential) 
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g. Hexagonal system 

Ratio between edges cba   

 
Figure 24 - A 

translation cell of the 

Hexagonal system 

Angle ratio  120γ,90βα  

Symmetry elements 

Center inversion point 

7 mirror planes 
6 2-fold axes 

1 6-fold axis (Essential) 

 

 

The tight packing of each of the seven typical translation cells 

forms a different crystallographic network. The vertices of the 

translation cells which form the points of the network are the 

location around which the symmetry groups operate. When we 

examine the aforementioned seven networks, we find that there are 

other possible points in the network space in which the symmetry 

groups may be placed. That is, the symmetry groups operate on the 

network around that point without altering the network. 

These points join the whole array and create additional 

crystallographic networks. The location of the additional points in 

space is not random. Each new point has a representation in the 

typical translation cell. 

The location of the point on the cell appears in four different 

forms (Figure 25): 

a. At the vertices of the cell – A primitive cell, marked as P 

b. At the centers of the bases of the cell and its vertices – A base 

centered cell, marked by C. 

c. At the centers of the faces of the cell and its vertices – A face 

centered cell, marked by F. 
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d. At the center of the cell and its vertices – A body centered cell, 

marked by I. 

 

 

Figure 25 - Four different 

types of cells based on the 

appearance of symmetry 

points 

P – primitive cell 

C – base centered 

F – face centered 

I – body centered 

 

The position of the additional points arises from the geometric 

shape of the cells. That is, it is dependent on the relation of the 

lengths of the edges, and the relation of the angles between them. 

A primitive cell exists in all seven systems. 

A base centered cell exists in the triclinic and orthorhombic 

systems. 

A face centered cell exists in the orthorhombic and cubic 

systems. 

A body centered cell exists in the orthorhombic, tetragonal and 

cubic systems. 

The different aforementioned combinations create 14 

crystallographic networks which are called “Bravais lattices”1 

(Figure 26). 

 
1 Auguste Bravais, 1811 – 1863, a French physicist known for his work in 

crystallography, the conception of Bravais lattices, and the formulation of 
Bravais law. 
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The 14 translation cells which represent the 14 Bravais lattices, 

may be farther divided by the symmetry elements which exist 

amongst the points of the cell. The smallest cell, which cannot be 

divided farther is called the Elementary Periodic Region (E.P.R.) 

of the network. 

The vertices, edges, and faces of the E.P.R., which is derived 

from the typical translation cell, are the points of intersection 

between the symmetry elements of the class of the translation cell. 

 

 
Figure 26 - The 14 Bravais lattices 
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The E.P.R. is a representation of the entire space, and contains 

within it a representation for each periodic element which is 

contained in the space, including, first and foremost, the symmetry 

group. 

The edges of the E.P.R. may represent rotation axes of the 

symmetry group, or a place of intersection between two mirror 

planes. The faces may be mirror planes of the group. 

The E.P.R. is generally part of the translation cell, but may be 

equal in size to the translation cell, or even be derived from 

multiple adjacent translation cells. 

The E.P.R. appears in three different geometric shapes (Figure 

27): 

a. A tetrahedral structure 

b. A prism with a rectangular base 

c. A prism with a triangular base 

 
Figure 27 - Typical E.P.R.s 

The inverse operation to deriving the E.P.R. is its replication. 

That is, reconstructing the space by replicating the E.P.R. using the 

symmetry elements. 

Locating the E.P.R.s which represent the different symmetry 

groups can be done by dividing the 14 translation cells which 

represent the 14 Bravais lattices using the symmetry elements of 

the holosymmetric symmetry group, which contains the maximal 
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number of possible symmetry elements. This will derive the 

smallest possible elementary cell. A sub-group of the 

holosymmetric group will derive a larger cell, which is formed by 

a replication of the smallest cell. 

 

a. Triclinic system 

 

The translation cell of the triclinic 

system does not contain additional 

symmetry elements besides 

translation. The cell can therefore 

not be divided farther. The E.P.R. 

of the triclinic system is identical 

in size to the typical translation 

cell (Figure 28).  
Figure 28 - E.P.R. of the 

primitive cell of the 

triclinic system 

 

b. Monoclinic system 

 

A typical translation cell of the 

monoclinic system that is not 

farther divided by its symmetry 

elements. The E.P.R. of the 

symmetry group represented by 

this cell is therefore identical in 

size to the typical translation cell 

(Figure 29). 
 

Figure 29 - E.P.R. of the 

primitive cell of the 

monoclinic system 
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The E.P.R. which is formed by 

dividing a base centered 

translation cell by the elements of 

the associated symmetry group. 

The E.P.R. is a quarter of the 

volume of the translation cell 

(Figure 30). 
 

Figure 30 - E.P.R. of the 

base centered cell of the 

monoclinic system 

 

c. Orthorhombic system 

 

 

A typical translation cell of the 

orthorhombic system that is not 

farther divided by its symmetry 

elements. The E.P.R. of the 

symmetry group represented by 

this cell is therefore identical in 

size to the typical translation cell 

(Figure 31). 
 

 
Figure 31 - E.P.R. of the 

primitive cell of the 

orthorhombic system 

The E.P.R. which is formed by 

dividing a base centered translation 

cell by the elements of the 

associated symmetry group. The 

E.P.R. is a quarter of the volume of 

the translation cell (Figure 32). 

 
 

 
Figure 32 - E.P.R. of the 

base centered cell of the 

orthorhombic system 



36 

 

The E.P.R. which is formed by 

dividing a face centered translation 

cell by the elements of the 

associated symmetry group. The 

E.P.R. is one eighth of the volume 

of the translation cell (Figure 33).  
Figure 33 - E.P.R. of the 

face centered cell of the 

orthorhombic system 

The E.P.R. which is formed by 

dividing a body centered 

translation cell by the elements of 

the associated symmetry group. 

The E.P.R. is one eighth of the 

volume of the translation cell 

(Figure 34). 

 
Figure 34 - E.P.R. of the 

body centered cell of the 

orthorhombic system 

 

d. Tetragonal system 

A typical translation cell of a 

tetragonal system that does not 

contain mirror planes and that is 

not farther divided by its symmetry 

elements. The E.P.R. of the 

symmetry group represented by 

this cell is therefore identical in 

size to the typical translation cell 

(Figure 35). 

 
Figure 35 - E.P.R. of the 

primitive cell of the 

tetragonal system not 

including mirror 

operations 
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The E.P.R. which is formed by 

dividing a primitive translation cell 

by the elements of the associated 

symmetry group which contains 

mirror planes. The E.P.R. is a 

quarter of the volume of the 

translation cell (Figure 36).  
Figure 36 - E.P.R. of the 

primitive cell of the 

tetragonal system 

including mirror 

operations 

The E.P.R. which is formed by 

dividing a body centered 

translation cell by the elements of 

the associated symmetry group 

which does not contain mirror 

planes. The E.P.R. is one eighth of 

the volume of the translation cell 

(Figure 37). 
 

Figure 37 - E.P.R. of the 

body centered cell of the 

tetragonal system not 

including mirror 

operations 

The E.P.R. which is formed by 

dividing a body centered 

translation cell by the elements of 

the associated symmetry group 

which contains mirror planes. The 

E.P.R. is one sixteenth of the 

volume of the translation cell 

(Figure 38). 
 

Figure 38 - E.P.R. of the 

body centered cell of the 

tetragonal system 

including mirror 

operations 
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e. Cubic system 

The E.P.R. which is formed by 

dividing a primitive translation cell 

by the elements of the 

holosymmetric group. The E.P.R. is 

one part in twenty-four of the 

volume of the translation cell 

(Figure 39).  
Figure 39 - E.P.R. of the 

primitive cell of the 

cubic system 

The E.P.R. which is formed by 

dividing a primitive translation cell 

by the elements of the symmetry 

group which does not contain mirror 

planes. The E.P.R. is one sixth of the 

volume of the translation cell 

(Figure 40).  
Figure 40 - E.P.R. of the 

primitive cell of the 

cubic system not 

including mirror 

operations 

The E.P.R. which is formed by 

dividing a primitive translation cell 

by the elements of the symmetry 

group which does not contain mirror 

planes or 4-fold rotation symmetry. 

The E.P.R. is one twelfth of the 

volume of the translation cell 

(Figure 41). 
 

Figure 41 - E.P.R. of the 

primitive cell of the 

cubic system not 

including mirror 

operations or 4-fold 

rotation axes 
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The E.P.R. which is formed by 

dividing a body centered translation 

cell by the elements of the 

holosymmetric group. The E.P.R. is 

one part in forty-eight of the volume 

of the translation cell (Figure 42). 

 
Figure 42 - E.P.R. of the 

body centered cell of the 

cubic system 

The E.P.R. which is formed by 

dividing a body centered translation 

cell by the elements of the symmetry 

group which does not contain mirror 

planes or 4-fold rotation symmetry. 

The E.P.R. is one twelfth of the 

volume of the translation cell 

(Figure 43).  
Figure 43 - E.P.R. of the 

body centered cell of the 
cubic system not 

including mirror 

operations or 4-fold 

rotation axes 

The E.P.R. which is formed by 

dividing a face centered translation 

cell by the elements of the associated 

symmetry group. The E.P.R. is one 

part in ninety-two of the volume of 

the translation cell (Figure 44). 

 
Figure 44 - E.P.R. of the 

face centered cell of the 

cubic system 
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f. Trigonal system 

 

The E.P.R. which is formed by dividing 

a primitive translation cell by the 

elements of the holosymmetric group. 

The E.P.R. is one sixth of the volume of 

the translation cell (Figure 45). 

 
Figure 45 - E.P.R. of 

the primitive cell of 

the trigonal system 

The E.P.R. which is formed by dividing 

a primitive translation cell by the 

elements of the symmetry group which 

does not contain mirror planes. The 

E.P.R. is one third of the volume of the 

translation cell (Figure 46). 

 
Figure 46 - E.P.R. of 

the primitive cell of 

the trigonal system 

not including mirror 

operations 
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g. Hexagonal system 

 

The E.P.R. which is 

formed by dividing a 

primitive translation cell 

by the elements of the 

holosymmetric group. 

The E.P.R. is one twelfth 

of the volume of the 

translation cell (Figure 

47). 

 

 
Figure 47 - E.P.R. of the primitive 

cell of the hexagonal system 

The E.P.R. which is 

formed by dividing a 

primitive translation cell 

by the elements of the 

symmetry group which 

does not contain mirror 

planes. The E.P.R. is one 

half of the volume of the 

translation cell (Figure 

48). 

 

 
Figure 48 - E.P.R. of the primitive 

cell of the hexagonal system not 

including mirror operations 

The translation cell of the 

hexagonal system does 

not contain additional 

symmetry elements 

besides translation. The 

cell can therefore not be 

divided farther. The 

E.P.R. of the triclinic 

system is identical in size 

to the typical translation 

cell (Figure 49). 

 
Figure 49 - E.P.R. of the primitive 

cell of the hexagonal system 

including only translations 
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5.2 Filtering the Elementary Periodic Regions (E.P.R.s) 

which contain 2-fold axes which rotate them into 

themselves 

As mentioned in the chapter dealing with the method for 

locating the surfaces, an E.P.R. which may contain a representation 

of a surface which partitions space into two identical subspaces 

will also contain the operation which rotates one subspace into its 

dual-complementary subspace. This operation is a 2-fold axis or 

axes which are represented within the E.P.R. and rotate it into 

itself. 

The process of filtering the E.P.R.s found in the previous 

chapter down to the ones which contain a 2-fold axis or axes is 

done systematically, using the rules derived from examining the 

known examples of surfaces which partition space into two 

identical subspaces. 

A matching 2-fold axis must follow the following rules: 

a. The axis passes through the center of the E.P.R. 

b. If the axis intersects the edges of the E.P.R., the intersection 

would be in the middle point of the edge 

c. If the axis goes through the face of the E.P.R., the intersection 

point will be at the center of the face 

d. The axis may pass through opposite edge middle points 

e. The axis may pass through opposite face centers 

f. The axis may pass through the center of an edge and the center 

of a face that is opposite from that edge 

g. If the E.P.R. contains more than two axes, they will all be on a 

single plane. In case an E.P.R. contains several axes, which are 

not on the same plane, all the different planes which contain 

the maximal number of axes must be located. 
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On the exterior of the E.P.R.s which contain 2-fold axes which 

rotate them into themselves, we will locate 2-fold axes which rotate 

them into a neighboring E.P.R. while maintaining the above rules. 

Filtering down to the E.P.R.s which may contain a 2-fold axis 

or axes, out of the sum total of E.P.R.s located in the previous 

chapter, will be done individually for each system. We will mark 

each E.P.R. using the shortened system name and a serial number, 

based on the order of locating it. 

 

a. The Triclinic system 

The E.P.R. is equal in size to the 

typical translation cell and has 

the lowest degree of symmetry. It 

does not contain any 2-fold axes 

which rotate it into itself (Figure 

50). 

 
Figure 50 - E.P.R. of the primitive 

cell of the Triclinic system 

 

b. The Monoclinic system 

A primitive cell of the Monoclinic 

system does not contain 2-fold 

axes which rotate it into itself 

(Figure 51). 

 
Figure 51 - E.P.R. of the 

primitive cell of the Monoclinic 

system 



44 

 

The E.P.R. which is derived from 

a base centered cell does not 

contain 2-fold axes which rotate it 

into itself (Figure 52). 

 
Figure 52 - E.P.R. of the base 

centered cell of the Monoclinic 

system 

c. The Orthorhombic system 

The E.P.R.s derived from all of the 

cell types of the Orthorhombic 

system are in the shape of boxes 

with the same ratios between their 

edge lengths and angles. They are 

all similar to the translation cell 

(Figure 53). 
 

Figure 53 - E.P.R. of the 

Orthorhombic system 

Locating the different options for passing 2-fold axes inside the 

E.P.R. (Figure 54) and on its exterior (Figure 55) 

 
Ortho.1 

 
Ortho.2 

 
Ortho.3 

 Figure 54 - The different options for passing 2-fold axes through the 

Orthorhombic system 

Figure 55 - The different options for passing 2-fold axes on the exterior of the 

Orthorhombic system 

 
Ortho.4 

 
Ortho.5 

 
Ortho.6 
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d. The Tetragonal system 

The E.P.R.s derived by the symmetry group of the Tetragonal 

system take two forms. One form is a prism of which base is a 

right-angle isosceles triangle. The other is that of a prism with a 

rectangular base (Figure 56). 

 

 

Figure 56 - E.P.R.s of the Tetragonal system 

 

Locating the different options for passing 2-fold axes through 

and on the exterior of the first form (Figure 57). 

 

 
Tet. 1 

 
Tet. 2 

 
Tet. 3 

 

Figure 57 - Different ways to pass 2-fold axes through the triangular based 

prism shaped E.P.R. of the Tetragonal system 
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Locating the different options for passing 2-fold axes through 

and on the exterior of the second form (Figure 58). 

 
Tet. 4 

 
Tet. 5 

 
Tet. 6 

 
Tet. 7 

 
Tet. 8 

 
Tet. 9 

 
Tet. 10  

Tet. 11 

Figure 58 - Different ways to pass 2-fold axes through the rectangular based 

prism shaped E.P.R. of the Tetragonal system 
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e. The Cubic system 

The E.P.R.s derived by the symmetry group of the Cubic 

system take two forms. One is the form of a tetrahedron, with 

a volume that is one part in forty-eight of the cube. The other, 

also a tetrahedron, with a volume that is one twelfth of the cube. 

The first form contains one option for passing a 2-fold axis 

which rotates it into itself (Figure 59). 

 
Cub. 1 

Figure 59 - An E.P.R. of the Cubic 

system, and the 2-fold axis which can 

be passed through it 

 

 

 Locating the different options for passing 2-fold axes through 

and on the exterior of the second form (Figure 60). 

Figure 60 - Different options for passing 2-fold axes through an E.P.R. of the 

Cubic system 

 
Cub. 2 

 
Cub. 3 

 
Cub. 4 

 
Cub. 5 
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f. The Trigonal system 

The Trigonal system contains an 

E.P.R. that is shaped as a 

tetrahedron, and there is one 

option for passing a 2-fold axis 

which rotates it into itself (Figure 

61). 

 
Tri. 1 

Figure 61 - An E.P.R. of the 

Trigonal system, and the 2-

fold axis which can be 

passed through it 

g. The Hexagonal system 

The E.P.R.s of the Hexagonal system take two forms. One, in 

the form of a prism of which base is an equilateral triangle. The 

other, in the form of a box, in which the ratios between the 

lengths of the edges of the box rare equal to those of the 

translation cell (Figure 62). 

 

 

Figure 62 - E.P.R.s of the Hexagonal system 
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Locating the different options for passing 2-fold axes through 

and on the exterior of the first form (Figure 63). 

 

 

 
Hex. 1 

 
Hex. 2 

 
Hex. 3 

 
Hex. 4 

 
Hex. 5 

 
Hex. 6 

 
Hex. 7 

 

Figure 63 - Different ways to pass 2-fold axes through the triangular based 

prism shaped E.P.R. of the Hexagonal system 
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Locating the different options for passing 2-fold axes through 

and on the exterior of the second form (Figure 64). 

Hex. 8 
 

Hex. 9 

Hex. 10 Hex. 11 

Figure 64 - Different ways to pass 2-fold axes through the rectangular based 

prism shaped E.P.R. of the Hexagonal system 

5.3 The method for locating the 2-fold axis networks 

Locating the 2-fold axis networks is done by replicating each 

of the E.P.R.s which contain a 2-fold axis or axes (As were 

determined in the previous chapter), until receiving a network 

segment in which the periodic cells which form the network can be 

located. The periodic cell is one which is bounded by the 2-fold 

axes of the network. These networks, called “2-fold axis 
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networks”, are categorized topologically based on the periodic 

cells bounded by them. 

It is possible that replicating different E.P.R.s, including ones 

created from different symmetry systems, may result in 

topologically identical 2-fold axis networks. That is, the periodic 

cells of the networks would be topologically identical. 

In some cases, the 2-fold axis network may contain more than 

one periodic cell. That is, multiple periodic cells may be located, 

which form the same network. 

The periodic cell of the 2-fold axis network may appear in one 

of two forms (Figure 65): 

a. A connected three-dimensional polygon, which is derived from 

the network, and is a periodic unit in which a periodic segment 

of the surface is bounded. 

b. Two identical parallel planar polygons, which are separate 

from each other. The surface segment bounded between them 

forms a sleeve around an axis that passes through the center of 

both polygons. We call this cell a “Split Polygon Cell”. A 

periodic split polygon cell is derived from a multi-layered 2-

fold axis network. 

 

  

 

Figure 65 - Periodic cells and the surface segments bounded by them 



52 

 

 

The periodic cell which characterizes the different 2-fold axis 

networks will be shown, for demonstration purposes, along with an 

elementary surface segment that is bounded by it. 

 

The shown surface segment is a minimal surface. A surface 

which may be formed by dipping the periodic cell in a soap 

solution. 

 

Replicating the periodic cell along with the surface segment 

leads to the location of periodic surfaces which partition space into 

two identical subspaces. We observe that these surfaces are not 

unique, and refer to them as “soap solution surfaces” (That is, 

surfaces which form by dipping their closed cell in a soap solution). 

We have already demonstrated that any motif which is enclosed 

by the periodic cell leads to the creation of a two-dimensional 

surface which partitions space into two identical subspaces. The 

question arises, then, whether different motifs enclosed in the same 

cell may lead to the creation of topologically different surfaces 

which partition space into two identical subspaces. This question 

will be farther discussed later on. 

 

The 2-fold axis networks will be numbered by the order in 

which they were located. It is important to note that the number of 

different 2-fold axis networks is finite. The proof of this lies in the 

fact that the number of symmetry groups in three-dimensional 

space is also finite (230 groups). From this fact, we can derive that 

the number of E.P.R.s is also finite, and hence so are the number 

of E.P.R.s in which there is a 2-fold axis or axes. Replicating those 

E.P.R.s hence leads to a finite number of 2-fold axis networks. 
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5.4 The process of locating the 2-fold axis networks 

The Triclinic and Monoclinic systems did not have any E.P.R.s 

containing a 2-fold axis or axes which rotate them into themselves, 

or a neighboring E.P.R. 

In the Orthorhombic system, replicating the E.P.R.s Ortho.1, 

Ortho.2 and Ortho.3 (Figure 66) leads to the formation of a multi-

layered 2-fold network. All of the layers are disconnected, parallel 

and at equal distances from each other. Each layer is a planar 

network of squares or rectangles (Figure 67). We call this network 

“Net1” (Network number 1). 

 
Ortho.1 

 
Ortho.2 

 
Ortho.3 

Figure 66 - The E.P.R.s Ortho.1, Ortho.2 and Ortho.3 along with their 2-fold 

axes 

 
Figure 67 - The 2-fold axis network Net1 
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The periodic cell of Net1 is a split polygon cell with rectangular 

bases (Figure 68). 

 
Figure 68 - The periodic cell of Net1 

 

Replicating the E.P.R.s Tet.1, Tet.3, Tet.4, Tet.5, Tet.6 and 

Tet.7, all from the Tetragonal system, lead to the formation of 2-

fold axis networks which are topologically similar to Net1. That is, 

multi-layered networks with equal distance between layers and 

rectangular bases (Figure 69). 

 

 
Tet.1 

 
Tet.3 

 
Tet.4 
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Tet.5 

 
Tet.6 

 
Tet.7 

Figure 69 - Additional E.P.R.s which may form Net1 

Replicating the E.P.R.s Ortho.4 and Ortho.5 (Figure 70) forms 

a 2-fold axis network of which axes join at a vertex in a cross-

shape. In one direction along the network axes, the crosses in 

adjacent vertices are perpendicular to one another. In the other two 

directions, they are parallel to each other (Figure 71). 

 
Ortho.4 

 
Ortho.5 

Figure 70 - The E.P.R.s Ortho.4 and Ortho.5 along with their 2-fold axes 

 
Figure 71 - The 2-fold axis network Net2 
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The periodic cell of the network, henceforth “Net2”, is a 

connected polygon with eight edges, in which a saddle-shaped 

surface segment is bounded (Figure 72). 

 

 
Figure 72 - The periodic cell of Net2 

 

The 2-fold axis network 

which is formed by replicating 

the E.P.R. Ortho.6 (Figure 73), 

henceforth “Net3”, has uniform 

vertices. The 2-fold axes which 

intersect at a vertex form a cross. 

In one direction along the 

network’s axes, the crosses at 

adjacent vertices are parallel. In 

the other two directions, they are 

perpendicular (Figure 74).   

 

 

Figure 73 - The E.P.R. Ortho.6 

along with its 2-fold axes 
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Figure 74 - The 2-fold axis network Net3 

 

The E.P.R.s Tet.2 and Tet.8 (Figure 75) lead to the formation 

of 2-fold axis networks which are topologically similar to Net3. 

 

 

 
Tet.2 

 
Tet.8 

Figure 75 - Additional E.P.R.s which may form Net2 



58 

 

 
 

Figure 76 - Three periodic cells within Net3 

 

Within Net3 are three different periodic cells (Figure 76), each 

of which can lead to the formation of a surface which partitions 

space into two identical subspaces (Figure 77). 

 

 

Figure 77 - The periodic cells of Net3 
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The 2-fold axis network which is 

formed by the replication of the E.P.R. 

Tet.9 (Figure 78) is a multi-layered 

network. Each layer of the network 

consists of a planar grid of right-

angled isosceles triangles (Figure 79). 

 

 

 

 

 
Figure 79 - The 2-fold axis network Net4 

 

The periodic cell of this network, henceforth “Net4”, is a split 

polygon cell with right-angled isosceles triangles as its bases 

(Figure 80). 

 
Figure 78 - The E.P.R. 

Tet.9 along with its 2-fold 

axes 
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Figure 80 – The periodic cell of Net4 

 

The 2-fold axis 

network which is formed 

by replicating the E.P.R. 

Tet.10 (Figure 81) has 

uniform vertices. The 2-

fold axes which intersect 

at a vertex form a cross. 

Along the network’s axes, 

the crosses along adjacent 

vertices are perpendicular 

to each other (Figure 82). The network, henceforth “Net 5”, is 

sometimes referred to as “The Crosses Network”. 

 
Figure 81 - The E.P.R. Tet.10 along with 

its 2-fold axes 
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Figure 82 - The 2-fold axis network Net5 

Replicating the E.P.R. Cub.5 

(Figure 83) which belongs to the Cubic 

system, leads to the formation of a 2-

fold axis network which is topologically 

similar to Net5 (Figure 84). 

 

 
Figure 84 - The periodic cell of Net5 

 
Figure 83 - Additional 

E.P.R. which may form 

Net5 
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The 2-fold axis network 

formed by replicating the 

E.P.R. Tet.11 (Figure 85) 

has uniform vertices. The 2-

fold axes which intersect at 

a vertex form a cross. The 

network forms interlaced 

parallel planar layers. In 

one layer, the crosses are 

parallel to each other. In the 

next, the crosses are perpendicular to each other. Along the axes 

going perpendicular to the layers, the crosses form a corkscrew 

shape, with each intersection being rotated 450 in relation to the 

adjacent intersections (Figure 86). 

 

 
Figure 86 - The 2-fold axis network Net6 

 
Figure 85 - The E.P.R. Tet.11 along 

with its 2-fold axes 
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This 2-fold axis network, henceforth “Net6”, contains two 

different periodic cells (Figure 87), each of which may lead to the 

formation of a surface which partitions space into two identical 

subspaces (Figure 88). 

 

 
Figure 87 - Two periodic cells within Net6 

 

 

  

Figure 88 - The periodic cells of Net6 
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The 2-fold axis network 

formed by the replication of 

the E.P.R. Cub.1 (Figure 89) 

can be described as a 

combination of three multi-

layer networks which are 

similar to Net1. The 

directions of the layers of 

each of these three networks 

is perpendicular to the other 

two (Figure 90). 

 

 
 

Figure 90 - The 2-fold axis network Net7 

 
Figure 89 - The E.P.R. Cub.1 along 

with its 2-fold axis 
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Replicating the E.P.R. 

Cub.2 (Figure 91) leads to a 

network which is 

topologically similar to the 

above network, henceforth 

“Net7”. 

Within Net7 there exist 

two different periodic cells 

(Figure 92), each of which 

may lead to the formation 

of a surface which 

partitions space into two identical subspaces (Figure 93). 

 

 
Figure 92 - Two periodic cells within Net7 

 

Figure 91 - Additional E.P.R. which 

may form Net7 
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Figure 93 - The periodic cells of Net7 

 

The 2-fold axis network that is 

formed by replicating the E.P.R. 

Cub.3 (Figure 94) has two types of 

vertices. One is across shaped. The 

other is in the intersection of three 2-

fold axes on the same plane. The angle 

between each pair of adjacent 2-fold 

axes is 600 (Figure 95). 

 

Figure 95 - 

The 2-fold axis 

network Net8 

 
Figure 94 - The E.P.R. 

Cub.3 along with its 2-fold 

axes 
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The periodic cell of the network, henceforth “Net8”, is in the 

form of a connect polygon with four edges, in which a saddle-

shaped surface segment is bounded (Figure 96). 

 

Figure 96 - 

The periodic 

cell of Net8 

 

 

The 2-fold axis network 

formed by replicating the 

E.P.R. Cub.4 (Figure 97) has 

uniform vertices. Each vertex 

is an intersection of three 2-

fold axes. The angle between 

each pair of adjacent 2-fold 

axes is 600 (Figure 98). 

 

Figure 97 - The E.P.R. Cub.4 along 

with its 2-fold axis 
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Figure 98 - 

The 2-fold 

axis network 

Net9 

 

This 2-fold axis network, henceforth “Net9”, contains two 

different periodic cells (Figure 99), each of which may lead to the 

formation of a surface which partitions space into two identical 

subspaces. 

 

  
Figure 99 - The periodic cells of Net9 
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The 2-fold axis network which is 

formed by the replication of the 

E.P.R. Tri.1 (Figure 100) is a multi-

layered network. Each layer of the 

network consists of a planar grid of 

equilateral triangles. Any two 

adjacent layers are rotated 1800 

relative to one another (Figure 101). 

 

 

 

 

Figure 101 - The 2-

fold axis network 

Net10 

 

 

The periodic cell of this network, henceforth “Net10”, is a split 

polygon cell with equilateral triangles, which are rotated 1800 

relative to one another, as its bases (Figure 102). 

 
Figure 100 - The E.P.R. 

Tri.1 along with its 2-fold 

axis 
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Figure 102 - The 

periodic cell of Net10 

 

The 2-fold axis network which 

is formed by the replication of the 

E.P.R. Hex.1 (Figure 103) is a 

multi-layered network. Each layer 

of this network, henceforth 

“Net11”, consists of a planar grid 

of equilateral triangles (Figure 

104). 

 
Figure 104 - The 2-fold axis network Net11 

Figure 103 - The E.P.R. Hex.1 

along with its 2-fold axes 
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Replicating the E.P.R.s Hex.2 and Hex.9 (Figure 105) leads to 

the formation of 2-fold axis networks which are topologically 

similar to Net11. 

 

 
Hex.2 

 
Hex.9 

Figure 

105 - 

Additional 

E.P.R.s 

which 

may form 

Net11 

 

 

The periodic cell of Net11 is a split polygon cell with 

equilateral triangles as its bases (Figure 106). 

 

 

 
Figure 106 - The periodic cell of Net11 
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The 2-fold axis network 

which is formed by the 

replication of the E.P.R. 

Hex.3 (Figure 107) is a 

multi-layered network. 

Each layer of this network, 

henceforth “Net12”, 

consists of a planar grid of 

triangles with angles which 

are 300, 600 and 900 (Figure 

108). 

 

 

 

 

Figure 

108 - 

The 2-

fold axis 

network 

Net12 

 

 

 

Replicating the E.P.R.s Hex.5, Hex.6, Hex.8 and Hex.11 

(Figure 109) leads to the formation of 2-fold axis networks which 

are topologically similar to Net12. 

 
Figure 107 - The E.P.R. Hex.3 along 

with its 2-fold axes 
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Hex.5 

 
Hex.8 

Figure 

109 - 

Additional 

E.P.R.s 

which 

may form 

Net12 

 
Hex.6 

 
Hex.11 

 

The periodic cell of Net12 is a split polygon cell with triangles 

with angles which are 300, 600 and 900 as its bases (Figure 110). 

 
Figure 110 - The periodic cell of Net12 
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The 2-fold axis network 

which is formed by the 

replication of the E.P.R. 

Hex.4 (Figure 111) is a 

connected network made of 

multiple planar layers of 

equilateral triangles. 

Perpendicular to the layers 

are 2-fold axes which go 

through the middles of the 

edges of the triangles (Figure 112). 

 

 
Figure 112 - The 2-fold axis network Net13 

Replicating the E.P.R. Hex.10 

(Figure 113) leads to the formation of 

a 2-fold axis network which is 

topologically similar to the above 

network, henceforth “Net13”. 

Any periodic cell within Net13, in 

which a minimal surface segment may 

be bounded, would, if replicated, lead 

 

Figure 111 - The E.P.R. Hex.4 

along with its 2-fold axes 

 

Figure 113 - E.P.R 

Hex.10 which may 

form Net13 
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to the creation of a surface which self-intersects. Therefore, it does 

not contain a periodic cell which may lead to the formation of a 

surface which partitions space into two identical subspaces. 

The 2-fold axis network which 

is formed by the replication of the 

E.P.R. Hex.7 (Figure 114) is a 

connected network made of 

multiple planar layers of 

equilateral triangles. Perpendicular 

to the layers are 2-fold axes which 

go through the middles of the edges 

of the triangles (Figure 115). 

 

 

 
Figure 115 - The 2-fold axis network Net14 

 

This network, henceforth “Net14”, also does not contain a 

periodic cell which may lead to the formation of a surface which 

partitions space into two identical subspaces. 

 

Figure 114 - The E.P.R. 

Hex.7 along with its 2-

fold axes 
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5.5 Surface construction and topological classification 

In the previous chapter, we have discovered fourteen 

topologically different 2-fold axis networks. In two of the 

networks, no E.P.R. in which a surface segment which may lead to 

the construction of a smooth periodic surface which partitions 

space into two identical subspaces could be found. Within the 

remaining twelve 2-fold axis networks, seventeen suitable E.P.R.s 

were found. Replicating the elementary surface segment using the 

2-fold axes in which it is bounded leads to the creation of a smooth 

periodic surface which divides space into two identical subspaces. 

However, being constructed from distinct E.P.R.s does not 

guarantee that the surfaces are topologically distinct. As mentioned 

in the chapter describing the characteristics of the surfaces, the two 

subspaces into which a surface partitions space can be described 

using two dual-complementary tunnel networks. These tunnel 

networks can be used to topologically classify the surfaces. If two 

surfaces have topologically identical tunnel networks, then they are 

topologically identical. 

These topologically distinct dual networks will be named based 

on their typical structure, and using characteristic names, some of 

which are known. 

The E.P.R.s are replicated based on the order in which they 

were located, until receiving a surface segment which allows 

identifying the tunnel network. After identifying the tunnel 

network, we shall point out other E.P.R.s which may form 

topologically identical networks. The typical surface that is 

attributed to a typical tunnel network is the surface with the largest 

degree of symmetry. Meaning, the symmetry group which operates 

on it has the maximal number of symmetry elements. Additionally, 

it has the smallest bounding cell. 



77 

 

The region containing the 

typical surface segment is derived 

based on the elements of the 

symmetry group which defines it, 

until receiving the E.P.R. which 

represents the region, the 2-fold axis 

network, the surface, and the tunnel 

network. 

 

Replicating the split polygon 

cell of Net1 (Figure 116) yields a 

surface (Figure 117), the tunnel network of which is topologically 

similar to a cubic network (Figure 118). We refer to this surface as 

the “cubic surface”. 

 

 

 
 

Figure 117 - The cubic surface 

 
Figure 116 - The split 

polygon cell of Net1 
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Figure 118 - Tunnel networks of the cubic surface 

There are two more periodic cells (Figure 119) which lead to 

the formation of surfaces which are topologically similar to this 

surface. One is a cell derived from Net7, the other from Net9. Both 

of these 2-fold axis networks are defined by the cubic system. The 

first cell is the smallest cell which forms this surface, and is the 

elementary periodic unit which is bounded by the 2-fold axes. This 

typical surface partitions two cubic networks (Figure 120). 

 

 
 

Figure 119 - Additional periodic cells which lead to the formation of the cubic 

surface 
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Figure 120 - Cubic networks separated by the cubic surface 

 

 

We divide the space 

containing the surface by the 

symmetry elements until 

receiving the minimal 

E.P.R. which represents the 

space, surface, 2-fold axis 

network and dual-

complementary tunnel 

networks (Figure 121). 

 

 
Figure 121 - Minimal E.P.R. 

representing the cubic surface 
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Replicating the connected 

eight-edged polygon periodic cell 

of Net2 (Figure 122) leads to the 

formation of a surface (Figure 

123), the tunnel network of which 

is topologically similar to the 

diamond network (Figure 124). 

We refer to this surface as the 

“diamond network surface”. 

 

 

 
 

Figure 123 - The diamond network surface 

 

Figure 122 – The connected 

eight-edged polygon periodic 

cell of Net2 
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Figure 124 - Tunnel networks of the diamond network surface 

There are seven additional periodic cells (Figure 125) which 

lead to the formation of a surface that is topologically similar. Two 

are derived from Net6, while the rest are derived from Net3, Net5, 

Net7, Net9, and Net10. These 2-fold axis networks are defined by 

the cubic system. The cell derived from the 2-fold axis network 

Net8 is the smallest cell which forms this surface. It is the 

elementary periodic unit which is bounded by the 2-fold axes. This 

typical surface partitions two diamond networks (Figure 126). 

Net3 Net5 

Net6 Net6 

 
Net8 

 
Net9 

 
Net10 

Figure 125 - Additional periodic cells which lead to the formation of the cubic 

surface 
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Figure 126 - Diamond networks separated by the diamond network surface 

 

 

We divide the space containing 

the surface by the symmetry elements 

until receiving the minimal E.P.R. 

which represents the space, surface, 

2-fold axis network and dual-

complementary tunnel networks 

(Figure 127). 

 

 

Figure 127 - Minimal 

E.P.R. representing 

the diamond network 

surface 
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Replicating the connected 

six-edged polygon periodic cell 

of Net3 (Figure 128) leads to 

the formation of a surface 

(Figure 129), the tunnel 

network of which has uniform 

vertices (Figure 130). Each 

vertex is the intersection of four 

edges on one plane. The planes 

of adjacent vertices in one 

direction are perpendicular to 

each other. In the other two 

directions, they are parallel. We 

refer to this network as the 

“crosses network” and to the 

surface which partitions the two networks as the “crosses network 

surface”. 

 

 

 

Figure 129 - The crosses network surface 

 

 
 

Figure 128 - The connected six-

edged polygon periodic cell of 

Net3 
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Figure 130 - Network tunnels of the crosses network surface 

We divide the space 

containing the surface by the 

symmetry elements until 

receiving the minimal E.P.R. 

which represents the space, 

surface, 2-fold axis network and 

dual-complementary tunnel 

networks (Figure 131). 

Replicating the split polygon 

cell of Net3 (Figure 132) yields a 

surface (Figure 133), the tunnel 

network of which appears as a 

combination between a cubic 

network and a diamond network 

(Figure 134). The network has 

two different types of vertices. 

One is an intersection between 

four edges, similar to the 

diamond network, and the other 

is the intersection of six edges, 

 
Figure 131 - Minimal E.P.R. 

representing the crosses network 

surface 

 
Figure 132 - The split polygon 

cell of Net3 



85 

 

similar to the cubic network. We refer to this network as the 

“diamond cubic network” and to the surface which partitions the 

two networks as the “diamond cubic surface”. The existence of 

this surface was not known prior to the use of the method 

described in this article. 

 

 

 

 
 

Figure 133 - The diamond cubic surface 
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Figure 134 - Tunnel networks of the diamond cubic surface 

We divide the space containing 

the surface by the symmetry elements 

until receiving the minimal E.P.R. 

which represents the space, surface, 2-

fold axis network and dual-

complementary tunnel networks 

(Figure 135). 

 

Replicating the split polygon cell 

of Net4 (Figure 136) yields a surface 

(Figure 137), with a multi-layer tunnel 

network (Figure 138).Each layer is a 

grid of pentagons with non-uniform 

edge lengths. Perpendicular axes 

connect the different layers. The 

network has two types of vertices. 

One is the intersection of four planar 

 
Figure 135 - The minimal 

E.P.R. representing the 

diamond cubic surface 

Figure 136 - The split 

polygon cell of Net4 
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edges. The other is the intersection of five edges, three of which 

are in the plane of the pentagons, and the other two are 

perpendicular to it. 

 

 
Figure 137 - The 450, 900, 450 triangle surface 

Since this surface is more easily described through its 2-fold 

axis network than its tunnel network, we refer to this surface as the 

“450, 900, 450 triangle surface”. 

 

 
Figure 138 - Tunnel networks of the 450, 900, 450 triangle surface 
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We divide the space 

containing the surface by 

the symmetry elements 

until receiving the 

minimal E.P.R. which 

represents the space, 

surface, 2-fold axis 

network and dual-

complementary tunnel 

networks (Figure 139). 

 

 

Replicating the connected eight-edged non-planar polygon 

periodic cell of Net7 (Figure 140) leads to the formation of a 

surface (Figure 141), the tunnel 

network of which has its axes 

go through the diagonals of the 

faces of a tightly packed array 

of cubes (Figure 142).  The 

network has two types of 

vertices. One type is at the 

intersection of four planar 

edges, located at the center of 

the faces of the cubes. The other is at the intersection of twelve 

edges, located at a common vertex to eight cubes, and connecting 

with the centers of their faces. We refer to this surface as the “face 

centered surface”. 

 
Figure 139 - Minimal E.P.R. representing the 

450, 900, 450 

 
Figure 140 - The connected eight-edged 

non-planar polygon periodic cell of Net7 
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Figure 141 - The face centered surface 

 

 
Figure 142 - Tunnel networks of the face centered surface 
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We divide the space containing the 

surface by the symmetry elements until 

receiving the minimal E.P.R. which 

represents the space, surface, 2-fold 

axis network and dual-complementary 

tunnel networks (Figure 143). 

 

 

Replicating the split polygon 

cell of Net11 (Figure 144) yields a 

surface (Figure 145). with a multi-

layer tunnel network (Figure 146). 

 

 

 
Figure 145 - The pentahedral-trihedral surface 

Each layer is a grid of hexagons with uniform edge lengths. 

Perpendicular axes connect the different layers. The network has 

two types of vertices. One is the intersection of three planar edges 

 

 
Figure 143 - Minimal 
E.P.R. representing 

the face centered 

surface 

Figure 144 - The split 

polygon cell of Net11 
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at 1200 angles from each other. The other is the intersection of five 

edges, three of which are in the plane of the hexagons, and the other 

two are perpendicular to it. This surface is referred to as the 

“pentahedral-trihedral surface”. 

 

 
 

Figure 146 - Tunnel networks of the pentahedral-trihedral surface 

 

We divide the space containing the 

surface by the symmetry elements 

until receiving the minimal E.P.R. 

which represents the space, surface, 2-

fold axis network and dual-

complementary tunnel networks 

(Figure 147). 

 

 
Figure 147 - Minimal 

E.P.R. representing the 

pentahedral-trihedral 

surface 
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Replicating the split polygon cell 

of Net12 (Figure 148) yields a surface 

(Figure 149), with a multi-layer tunnel 

network (Figure 150). Each layer is a 

grid of pentagons with non-uniform 

edge lengths. Perpendicular axes 

connect the different layers. 

 

 

 
 

Figure 149 - The 300, 600, 900 triangle surface 

The network has three types of vertices. One is the intersection 

of three planar edges. Another is at the intersection of six planar 

edges. The last is the intersection of five edges, three of which are 

in the plane of the pentagons, and the other two are perpendicular 

to it. Since this surface is more easily described through its 2-fold 

axis network than its tunnel network, we refer to this surface as the 

“300, 600, 900 triangle surface”. 

Figure 148 - The split 

polygon cell of Net12 
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Figure 150 - 

Tunnel 

networks of 

the 300, 600, 
900 triangle 

surface 

 

 

We divide the space 

containing the surface by the 

symmetry elements until 

receiving the minimal 

E.P.R. which represents the 

space, surface, 2-fold axis 

network and dual-

complementary tunnel 

networks (Figure 151). 

 

 

In this process of forming surfaces by replicating periodic cells 

with minimal surface segments, and topologically categorizing 

them, we have found eight topologically distinct surfaces. That is, 

their tunnel networks are topologically distinct. 

Each of the eight surfaces can be represented by the smallest 

periodic cell (Figure 152). 

 
Figure 151 - The minimal E.P.R. 

representing the 300, 600, 900 triangle 

surface 
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The cubic surface 

 
The face centered 

surface 

 
The diamond 

network surface 

 
The crosses 

network surface 

 
The 450,900, 450 

triangle surface 

 
The 300, 600, 900 

triangle surface 

 
The 

pentahedral-

trihedral 

surface 

 
The diamond 

cubic surface 

 

Figure 152 - Periodic cells representing the eight topologically different 

surfaces 
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5.6 A new class of surfaces which partition space into two 

identical subspaces 

 In the chapter dealing with the properties of the surfaces, we 

have mentioned that any motif that is bounded by the periodic cells 

of the 2-fold axis network can be replicated into a surface which 

partitions space into two identical subspaces. In the previous 

chapter, we have located eight such surfaces, by bounding a “soap 

solution surface” in the periodic cells. That is, we located a surface 

that is formed by dipping the perimeter of the periodic cell in a soap 

solution. In the next phase, we will consider whether other smooth 

surfaces can be bounded by the same perimeter, and whether such 

surfaces could lead to topologically different surfaces which 

partition space into two identical subspaces. That is, whether they 

produce tunnel networks which are topologically distinct from the 

eight already discovered. 

 
 

 
Figure 153 - A 

surface which 

partitions space 

into two 

identical 

subspaces, and 

has a tunnel 

network that is 
topologically 

distinct from the 

eight already 

discovered 
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The question of the possibility for such surface segments to 

exist arises from the discovery of a surface which partitions space 

into two identical subspaces, and has a tunnel network that is 

topologically distinct from the eight already discovered (Figure 

153). 

 

This surface was located empirically, by searching for dual-

complementary networks. The periodic cell of the surface is a split 

polygon cell (Figure 154), and is identical to one of the E.P.R.s 

previously located with one main difference: The surface segment 

within it is smooth but cannot be formed by dipping the perimeter 

in a soap solution. 

 

 

Figure 154 - A periodic cell bounded in 

a different manner within a known 

perimeter 

 

Smooth surface segments of this type can only be bounded in 

split polygon cells. Out of the seventeen periodic cells found, six 

are split polygon (Figure 155). 

The basic shape of a soap solution surface segment bounded by 

a split polygon cell, is that of a hollow cylinder which connects the 

two polygons. The new surface segment is in the shape of two such 

cylinders. In the same manner, surfaces in the shape of three 

cylinders, four, or more, may be bounded in the same perimeter. 
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Each of the resulting cells leads to the formation of a surface which 

divides space into two identical subspaces, which has a 

topologically unique tunnel network. 

 

 
Cubic cell  

Diamond cell 

 
Diamond cubic cell 

 
450, 900, 450 cell 

 
600, 600, 600 cell 

 
300, 600, 900 cell 

 

Figure 155 - Split-polygon periodic cells 

 

It may appear that dipping the perimeter in a soap solution 

cannot result in forming these new surface segments. However, 

farther dividing them by the mirror symmetry within them can 

result in a segment which can be formed by a soap solution (Figure 

156). This surface segment is bounded by a connected three-

dimensional polygon, of which some of the edges are 2-fold axes, 

and others are the intersection of the surface with the mirror planes 

of the symmetry group. 
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Figure 156 - A surface segment which 

can be formed by a soap solution 

 

 

This new class of surfaces includes an infinite number of 

surfaces, and is unique and distinct from the eight surfaces 

previously located. We call this class the “multi-sleeved class”. We 

can demonstrate multiple examples of surfaces which belong to 

this class (Figures 157 through 160). 

 

 

 

 
 

Figure 157 - A cell with orthorhombic symmetry and three sleeves and the 

surface formed by it 
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Figure 158 - A cell with tetragonal symmetry and four sleeves and the surface 

formed by it 

 

 

Figure 159 - A cell with tetragonal symmetry and two sleeves diagonal from 

each other and the surface formed by it 

 

 

Figure 160 - A cell with hexagonal symmetry and two sleeves and the surface 

formed by it 
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5.7 Surface which partition space into two identical 

subspaces, for which the dual tunnel networks contain 

curved edges 

Within the above mentioned “multi-sleeved class”, surfaces of 

which dual tunnel network contain curved edges were also 

discovered. In this chapter, we show examples of two of these 

surfaces. 

 

 
 

Figure 161 - A smooth surface which divides space into two identical 

subspaces 
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Figure 162 - Another example with both curved edges and straight edges 

 

5.8 Identical dual networks, in which an inversion point 

transforms one into its dual-complementary 

Through empirical search for unique networks, such as uniform 

networks (That is, a network which have uniform vertices and 

edges, such as the cubic network), one such unique network, in 

which each vertex is incident with three edges, was discovered 

(Figure 163) 
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Figure 163 - A newly discovered uniform network 

Locating the dual network, via locating the packing cell of the 

network (Figure 164), resulted in a dual network that is identical to 

the original network. Meaning, the two networks are dual-

complementary. 
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Figure 164 - Packing cell of the newly discovered uniform network and the 

dual-complementary networks 

 

Unexpectedly, no 2-fold axis which rotate one network into its 

dual-complementary was found. 

In this case, it was discovered that the symmetry operation 

which transforms one network into its dual-complementary is an 

inversion point symmetry. 

Between the two networks is a smooth surface which partitions 

space into two identical subspaces (Figure 165), as exists between 

any two identical, dual-complementary networks. The elementary 

surface segment in this case is not bounded by a perimeter made of 

2-fold axes, as in the two surface classes previously discussed. 
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Figure 165 - The surface separating the dual-complementary networks 

 

From this, we arrive at the conclusion that another class of 

surfaces which partition space into two identical subspaces exists. 

We refer to this class as the “inversion point surface class”. This 

discovery opens the door for farther investigation, and the 

development of a methodology for locating farther networks 

belonging to this new class. 
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6 Notation 

6.1 Notation methods 

God called the light “day,” and the darkness he 

called “night.”… God called the vault “sky.”… God 

called the dry ground “land,” and the gathered waters 

he called “seas.” And God saw that it was good… 

(Genesis 1) 

We usually describe the different morphological phenomena 

along with a graphical representation. Some of the phenomena are 

easy to describe. However, as a phenomenon is more complex, so 

it is more difficult to describe it. A phenomenon which cannot be 

described is as good as one which does not exist. It is therefore 

desirable that there is an agreed upon method to describe these 

phenomena as accurately as possible, whether by naming them or 

by using accepted symbols. 

Some of the morphological-geometric phenomena have 

existing well-known names. Almost anyone knows what a triangle, 

quadrilateral, pentagon, hexagon, etc. are. This is a notation based 

on the number of edges of the polygon. This information, however, 

is partial. The word “triangle” describes all polygons with three 

edges. And yet, it does not provide information regarding the 

length ratios between the edges. In order to provide more 

information, we must be more specific in the names used, such as 

equilateral, isosceles, right angle, etc. 

Three-dimensional phenomena, such as a ball, cube, prism, 

pyramid, etc. are known by the names given to them. The Platonic 

solids, tetrahedron, octahedron, hexahedron (Cube), 
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dodecahedron, and icosahedron, are regular objects with uniform 

edges vertices and faces. These objects are named after the number 

of faces they each have, without adding any information about the 

type of faces. And yet, because the number of these objects is 

small, it is easy to remember them by their names. 

The Archimedean solids are of a higher complexity level than 

the Platonic solids. They have uniform vertices and edges, but not 

uniform faces. As their number is greater, their notation is likewise 

more complex. Some of the Archimedean solids have names, but 

most are known by an accepted notation. This notation is based on 

the fact that the faces which form these solids are regular, and 

additionally, their vertices are identical. That is, the arrangement 

of faces around a vertex is identical for all vertices. Describing a 

vertex, for instance Triangle-Square, describes a solid in which 

each vertex is incident with a triangle and two squares. This 

notation is usually shortened into numbers (3.4.4) in which each 

number describes the number of edges of a face, and the order of 

the numbers describes the order of the faces around the vertex. We 

generally begin with the face with the least number of edges. When 

two adjacent faces are identical, there is an even shorter notation, 

such as 3.42. The exponent represents the number of identical 

adjacent faces incident with the vertex. 

The infinite edge uniform and vertex uniform polyhedra are 

described in the same way the finite polyhedra are described. This 

notation is topological. We know that the faces are regular, the 

edges are all equal, and that the number of faces and their order is 

the same between any two vertices. Yet there is no information 

about the absolute size of the edges. 

Phenomena like non-regular solids, networks, surfaces, etc. do 

not have a notation. A small number of those have a specific name. 
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6.2 Notation method for surfaces which partition space into 

two identical subspaces 

Each of the surfaces which partition space into two identical 

subspaces may be represented as an infinite polyhedra with saddle-

shaped face. The surfaces are formed from periodic polygonal 

cells, and surface segments bounded within them. Since the 

surfaces are formed from identical periodic cells, it is natural to 

think that describing the cell is sufficient for describing the surface. 

However, while the surfaces are made from identical periodic 

units, the number of units which are incident with a vertex is not 

generally uniform. That is, there may exist, in a surface, different 

types of vertices. Another issue is that different periodic cells may 

form surfaces which are topologically similar. 

The unique topological identification of a surface is based on 

the elementary translation cell of the surface, or based on the tunnel 

networks which are separated by the surface. Describing one of 

those two phenomena may be sufficient to describe the surface. 

The elementary translation unit is a segment of the minimal 

surface. The only information we can provide about the elementary 

translation unit is the Euler genus. While this is a vital detail, it is 

not unique. There may be topologically different surfaces with an 

identical Euler genus. 

A unique notation of the dual-complementary tunnel networks 

may be a tool for identifying topologically different surfaces. 

Periodic networks may be represented as a tight packing of 

periodic solids of which edges form the edges of the network. A 

notation for these solids may be a sufficiently accurate tool for 

describing the network. 

These solids may take several forms: 

a. Platonic or Archimedean solids. 



108 

 

b. Solids with saddle-shaped faces and uniform vertices. 

c. Solids with saddle-shaped faces and several types of vertices. 

d. Hybrid solids, with both planar and saddle-shaped faces. 

The planar faces may be regular or have different length edges. 

At this point we will only describe visually how each packing 

cells of the network looks. A unique formal notation does not yet 

exist. 

6.3 Description of the packing cells representing the surfaces 

This chapter contains the description of the packing cells of the 

eight dual-complementary tunnel networks which are partitioned 

by soap solution surfaces. 

The cubic surface (Figure 166) separates two cubic networks. 

 

 
Figure 166 - The cubic surface 
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The packing cell of each of the dual-complementary networks 

is a cube (Hexahedra) (Figure 167). 

 

 
 

Figure 167 - The packing cell of the cubic network 

 

The diamond surface (Figure 168) separates two diamond 

networks. 

The packing cell consists of four saddle-shaped hexagonal 

faces (Figure 169). It has two types of vertices. One is incident with 

two faces. The other is incident with three faces. 
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Figure 168 - The diamond network surface 

 

 
Figure 169 - The packing cell of the diamond network 
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The crosses network surface (Figure 170) separates two crosses 

networks. 

 
Figure 170 - The crosses network surface 

The packing cell has two types of faces (Figure 171). Two faces 

are saddle-shaped octagons with right angles. The other two faces 

are planar surfaces with six edges which trace squares. It has two 

types of vertices. One coincides with two faces, one of each type. 

The other coincides with three faces, two of which are octagons. 

 
Figure 171 - The packing cell of the crosses network 
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The diamond cubic surface (Figure 172) separates two 

networks which are a combination a diamond network and a cubic 

network. 

The diamond cubic network has two types of vertices, and 

therefore two types of packing cells (Figure 173). One consists of 

four saddle-shaped pentagons, with eight vertices, each being 

incident with three pentagons. The other has six faces, four of 

which are saddle-shaped pentagons, and two of which are planar 

rhombuses. It has ten vertices, two of which are each incident with 

two saddle-shaped pentagons, and the other eight are each incident 

with two saddle-shaped pentagons and one planar rhombus. 

 

 
 

Figure 172 - The diamond cubic surface 
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Figure 173 – The packings cell of the diamond cubic network 

 

The 450, 900, 450 triangle surface (Figure 174) separates two 

networks which have two types of vertices. 

 
Figure 174 - The 450, 900, 450 triangle surface 
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They therefore have two packing cells (Figure 175). One 

consists of four saddle-shaped hexagons and ten vertices. Two of 

the vertices are incident with four faces, and the other eight are 

incident with two faces. The other cell consists of three types of 

faces. Two if its faces are saddle-shaped pentagons, two are planar 

non-regular pentagons, and one is a rectangle. It has ten vertices in 

total. 

 

 
 

Figure 175 - The packing cells of the 450, 900, 450 triangle network 

 

The face centered surface (Figure 176) separates two face 

centered networks, which have two types of vertices. 
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Figure 176 - The face centered surface 

They therefore have two packing cells (Figure 177). One type 

of vertex is incident with twelve edges, and is at the center of a 

packing cell with twelve faces which are saddle-shaped rhombuses. 

We refer to this solid as a “hyperbolic rhombic dodecahedron”. The 

other type of vertex is incident with four edges, and is at the center 

of a packing cell with four faces which are saddle-shaped 

rhombuses. We refer to this solid as a “hyperbolic rhombic 

tetrahedron”. 

 
Figure 177 - The packing cells of the face centered network 
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The pentahedral-trihedral surface (Figure 178) separates two 

networks which have two types of vertices. 

 

 
 

Figure 178 - The pentahedral-trihedral surface 

 

They therefore have two packing cells (Figure 179). One type 

of vertex is at the intersection of three planar edges. It is at the 

center of a packing cell with three faces which are saddle-shaped 

hexagons. It has eight vertices, two of which are incident with three 

faces, and the rest are incident with two. The other type of vertex 

is the intersection of five edges, three of which are planar. It is at 

the center of a packing cell with five faces and twelve vertices. It 

has two types of faces, regular hexagons, and saddle-shaped 

hexagons. It also has two types of vertices, six are incident with a 

face of each type, and the other six are incident with one planar 

face and two saddle-shaped faces. 
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Figure 179 - The packing cells of the pentahedral-trihedral network 

 

The 300, 600, 900 triangle surface (Figure 180) separates two 

networks which have three types of vertices. 

Figure 180 - The 300, 600, 900 triangle surface 

They therefore have three packing cells (Figure 181). One type 

of vertex is at the intersection of six planar edges. It is at the center 

of a packing cell with six faces which are saddle-shaped hexagons. 
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Another type is at the intersection of three planar edges. It is at the 

center of a packing cell with three faces which are saddle-shaped 

hexagons which have a different shape from the faces of the other 

packing cell. The final type of vertex is incident with five edges, 

three of which are planar. It is at the center of a packing cell with 

five faces of four different types. Two of its faces are non-regular 

planar pentagons. One face is a saddle-shaped hexagon similar to 

the first packing cell. One is a saddle-shaped hexagon similar to 

the second packing cell. And the final face is a rectangle. The 

packing cells of this network have saddle-shaped hexagonal faces 

which are topologically similar but have different shapes. 

 

 
Figure 181 - The packing cells of the 300, 600, 900 triangle network 
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7 Summary 

7.1 The method for searching and classifying the surfaces 

The method for searching and classifying the surfaces proposed 

in this work is based on the properties of known surfaces which are 

periodic, infinite, and partition space into two identical subspaces. 

The properties of the surfaces points towards a link between 

the surfaces and symmetry groups, and packing of space. 

The surfaces being periodic means there is an elementary 

surface segment bounded by an elementary periodic region which 

fulfills all of the properties of the surface, and can be used to 

reproduce the entire surface. 

The existence of Elementary Periodic Regions (E.P.R.) which 

represent all of the properties of a surface, as well as the existence 

of a replication process based on the symmetry groups in three-

dimensional space, are the principles on which the method for 

searching and classifying the surfaces is built. 

Such an E.P.R. which represents a surface which partitions 

space into two identical subspaces would contain the following 

elements: 

a. Elementary surface segment – the smallest segment of the 

surface bounded by the E.P.R. which partitions it into two 

identical subspaces. 

b. 2-fold axis or axes, which rotate the E.P.R. into itself. That is, 

they rotate one subspace into the other. 

c. All of the vertex types of the dual-complementary tunnel 

networks, and the edges connecting them. The representation 

for each of the tunnel networks within the E.P.R. would be on 

one side of the elementary surface segment. 
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Filtering down the E.P.R.s which contain 2-fold axis or axes, 

out of all possible E.P.R.s, and replicating them leads to the 

discovery of networks, of which edges are all within infinite line 

representing 2-fold axes. These networks are called “2-fold axis 

networks”. 

The method for locating the 2-fold axis networks should yield 

all such networks. The number of E.P.R.s which may contain 2-

fold axis or axes is finite. This conclusion is based on the fact that 

the set of E.P.R.s which contain 2-fold axis or axes is a subset of 

the set of E.P.R.s which represent all symmetry groups, the number 

of which is also finite (32 in total). 

Since geometrically identical E.P.R.s may represent different 

symmetry groups, the actual number of E.P.R.s is smaller. 

The 2-fold axis networks, which form from replicating the 

E.P.R.s which contain 2-fold axes, are periodic, and may contain a 

periodic unit that is different from the network segment bounded 

by the E.P.R. In this work, we have detected within the 2-fold axis 

networks periodic cells which are formed by axis segments within 

the network, and in which a periodic surface segment is bounded. 

Since the 2-fold axis networks are fully contained within the 

surfaces which partition space into two identical subspaces, the 

surface segment bounded within the periodic cell of the 2-fold axis 

network is a periodic unit, replicating which would lead to the 

formation of the entire surface. 

The surface segment which is bounded within the periodic cell 

of the 2-fold axis network is smooth and complete, in the sense that 

it is impossible to go from one side of the surface segment to the 

other without crossing the boundaries of the periodic cell. 

The periodic cells of the 2-fold axis networks appear in two 

forms: 



121 

 

a. A surface segment bounded by a connected three-dimensional 

polygon 

b. A surface segment bounded by two planar polygons. Such a 

cell is called a “split polygon cell”. 

Within the periodic cells of the first form, topologically, only 

one type of surface segment may be bounded. In this work, the 

surface segment was represented as a minimal surface. That is, a 

“soap solution surface” which could be formed by dipping the 

connected three-dimensional polygon in a soap solution. 

In the latter form, there are two ways for a surface segment to 

be bounded. One is a soap solution surface bounded by the two 

polygons. The other is smooth surface which contains sleeve-like 

segments connecting the two polygons. This form of surface 

bounded by split polygon cells leads to the discovery of a new class 

of surfaces which partitions space into two identical subspaces. 

This class of surfaces is referred to as the “multi-sleeved class of 

surfaces”. 

The topological categorization of surfaces is done using the 

tunnel networks formed by the surfaces. That is, surfaces would be 

considered topologically distinct if and only if their tunnel 

networks are topologically distinct. 

The periodic cells which contained soap solution surface 

segments yielded eight topologically distinct surfaces which 

partition space into two identical subspaces. These eight surfaces 

are unique, and are therefore included in a unique class called the 

“soap solution class of surfaces”. 

The other form for a surface segment to be bounded by a split 

polygon cell leads to the discovery of the multi-sleeved class. This 

new class of surfaces contains an infinite number of surfaces, 

which are topologically distinct, and which partition space into two 
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identical subspaces. The implication of this is that there is an 

infinite number of distinct dual-complementary networks in 

three-dimensional space. 

7.2 Notation of the surfaces 

In this work, a notation method for the surfaces which partition 

space into two identical subspaces was suggested, based on their 

tunnel networks. The choice to use the tunnel networks for notation 

is based on the fact that those are used for the topological 

classification of the surfaces. 

Notation for the networks could be done in one of two methods: 

a. Based on the vertices of the network: A notation for the 

different vertices, and the relation between them, may provide 

some information about the networks, but is insufficient for 

reconstructing them. 

b. Based on the packing solids of the network: A notation which 

provides accurate information about the packing solids of the 

network, of which edges form the edges of the network, 

provides complete information which allows reconstructing the 

network, and describing it. 

In examining the two methods, we have found that the second 

alternative provides the most information. The information 

provided by this notation is as follows: 

a. The number of different types of packing solids. That is, the 

number of different types of vertices in the network. 

b. The types of faces, and the number of faces incident with a 

vertex. 

c. The number of vertices of each of the packing solids. 

d. The number of edges of each of the solids, which can be 

derived from the notation. 
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e. The number of faces of each solid, which can be derived from 

the number of vertices and edges of the solid. 

This information, which is provided by the suggested notation, 

should describe the geometric shape of the packing solids, and 

hence, the tunnel networks. With that available, locating the 

surface separating them is simple. 

This notation method was demonstrated by providing the 

notation for the eight tunnel networks separated by the eight 

surfaces belonging to the soap solution class. 

As the networks become more complex, meaning, the number 

of different types of vertices grows, so does the notation become 

more cumbersome. And as the types of faces increases, it becomes 

harder to reconstruct the packing solids. 

This notation method suffers from several weak points: 

a. The description of non-regular faces is inaccurate. The method 

describes the number of edges of each of the non-regular faces, 

but does not provide information about the relations between 

the edges, in length ratio or angles. 

b. It is possible for geometrically distinct faces with the same 

number of edges to exist within the same solid. For instance, 

two three-dimensional hexagons which are different from one 

another. 

c. In solids with more than one type of vertices, the notation does 

not provide information about the order in which they appear. 

When the number of different types of vertices is not large, it 

is still possible to reach the described network. As the number 

of types of vertices within a solid grows, the difficulty to 

reconstruct the packing solid using the suggested notation 

method increases. 
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Improving the method, or finding a better and clearer notation, 

is a worthy goal for farther research. The better the notation for 

surfaces and networks is, the easier it will be to describe them even 

to those not operating directly within the field. 
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